
Design and Usability of an Enhanced Geographic
Information System for Exploration of Multivariate
Health Statistics*

Robert M. Edsall
Arizona State University
The multidimensional nature of many types of data in modern geography calls for creative and innovative
approaches to their analysis. Statisticians have recently developed methods for exploring and visualizing large,
multivariate datasets, but cartographers and geographers in general have only recently begun to integrate these
methods for use with spatial and spatiotemporal datasets that are multivariate in character. This article will
present an example of such an integration—an environment for visualization of health statistics—as a case study
to demonstrate the philosophical and practical advantages of geovisualization systems for the exploration of
complex spatiotemporal information. Emphasis is placed on the encouragement of creative thinking about
geographic phenomena through the use of such data-rich graphical tools. Key Words: cartography,
epidemiology, geovisualization, information visualization.

Introduction

The analysis of datasets that are highly
multivariate in character is common in

modern geographical inquiry. A climatologist
attempting to understand a hurricane, for
example, is interested in its maximum sustained
wind speed, its proximity to populated areas,
the sea surface temperature underneath it, the
synoptic characteristics of the air masses
around it, and so on. A planner concerned with
perception of place might survey residents who
live around a park about the park’s accessibility,
its safety, its facilities, its proximity to their
homes, and other variables. A transportation
specialist might find the understanding of
multidimensional characteristics of roads—
such as their width, the volume of traffic
traveling on them, their maximum speed limit,
their accessibility, and other features—instru-
mental in the understanding of the transporta-
tion network as a whole.

The analysis of multidimensional geographic
data is facilitated through the construction of
and interaction with visual representations.
Griffith and Amrhein (1997) hold that visualiz-
ing data is a basic rule of thumb for developing
‘‘statistical wisdom’’ about multivariate data.

Many statisticians hold that visualization itself,
even without more traditional confirmatory
statistics, is a feasible method for gaining
valuable insight into datasets, particularly
datasets about which little is known or datasets
that are massive and multidimensional (Tukey
1977; Hurley and Buja 1990; Wegman 2000).
The use of maps and other graphic devices as
means of exploring spatial data—that is, as part
of the analysis process itself—is a cornerstone
of the emerging research theme of geographic
visualization, or geovisualization (DiBiase 1990;
MacEachren et al. 1992; MacEachren and
Kraak 1997). There is great potential in the
synthesis of geographic visualization with
statistical exploratory data analysis, particularly
targeted toward multivariate spatial and spa-
tiotemporal data, a link that has been estab-
lished in practice in recent years by a number of
projects and authors (Dykes 1997; Andrienko
and Andrienko 1999; MacEachren et al. 1999).

Epidemiologists are among the many types
of researchers for whom the understanding of
the datasets they frequently use is made
challenging by the multidimensional nature of
those data. Linking cancer mortality rates, for
example, to demographic, socioeconomic, and
other possible risk factors is a matter of the
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examination and exploration of tens or hun-
dreds of variables, often over many spatial
observational units and time steps. Though
statisticians are well versed in methods for
analyzing such datasets, visualization offers an
attractive alternative (or supplement) to, for
example, hundreds of logistic regression per-
mutations. This article will report on the design
and implementation of a visualization environ-
ment that links a geographic information
system (GIS) to custom-designed interactive
statistical representations, with the specific
conceptual goal of exploring health-statistics
data of many dimensions. A two-part usability
assessment, also described here, lends support
to the assertion that multiple linked views—in
particular the linked parallel coordinate plot,
scatterplot, and choropleth map—facilitate the
construction of knowledge about multivariate
health statistics data.

Multivariate Visualization and
Geographic Visualization

The exploration and understanding of spatial,
temporal, and attribute features trends in
health-statistics data is facilitated through
the use of interactive visual representations
(Plaisant 1993; MacEachren et al. 1998). Such
displays and tools encourage and support a
creative and intuitive search for patterns and
structures in the data that are difficult to detect
through nonvisual means. Interactive computer
displays provide the means of representing
complex data in a variety of representational
styles and symbolization choices. With each
style and choice, different insights might be
gained about a particular characteristic of the
dataset (e.g., a temporal trend). In tandem, the
interactive displays and tools in a visualization
environment can combine with the user to
construct knowledge about the complex data in
the representations (Rogers 1999).

Dynamic statistical graphics in support of
exploratory data analysis have roots in the work
of Becker, Cleveland, and Wilks (1988), which
has stimulated many other statisticians to
develop novel methods for analyzing abstract
multidimensional data. Buja, Cook, and
Swayne (1996) summarize some of these multi-
variate representation techniques via a taxon-
omy (or, as they call it, a ‘‘zoology’’). The
general methods developed for basic multi-

dimensional representation that they cite in-
clude: scatterplots, in which observations are
represented by locations of points; traces, in
which observations are represented as lines or
functions, as in parallel coordinate plots (Insel-
berg 1985) and Andrews curves; and glyphs, in
which characteristics of complex symbols such
as Chernoff faces and stick figures (Erbacher
et al. 1995) are functions of the observed values.

Providing geographers and other researchers
who study spatial and spatiotemporal data with
these sorts of tools for exploratory analysis of
their data has been a theoretical and practical
goal of geographic-information scientists
for at least the last decade (MacDougall 1992;
Monmonier 1992; Dykes 1997). Not unlike
exploratory data analysis (EDA), the research
initiative known as geovisualization grew out
of issues concerning the representation of
and interaction with large amounts of com-
plex data (MacEachren et al. 1992). It also grew
out of a rejection of a goal of previous carto-
graphic research: to find single optimal ways
of representing geographic information
(MacEachren and Ganter 1990). Many geovi-
sualization environments have been developed
that utilize the capabilities of computer graph-
ics for the display of geographical datasets
consisting of many variables (using multiple
forms of representation). In their review of
multivariate display in for geographical infor-
mation, DiBiase, Reeves, and colleagues (1994)
propose that effective geovisualization systems
consist of three complementary characteristics:
(1) an interface tailored to a specific set of users
(novices or domain experts, for example), (2)
interactivity that affords users the ability to
experiment with different symbolization meth-
ods, and (3) a design that fosters knowledge
discovery over confirmation.

With respect to spatially referenced health-
statistics data, the guidelines and tools de-
scribed above have been implemented in
dynamically linked maps and graphs by Plaisant
(1994) and in an enhanced geographic informa-
tion system and dynamic map by MacEachren
and colleagues (1998). More recently, Wang
and colleagues (2002) created a Web-based
application designed for health statistics that
features large geographical datasets repre-
sented simply and interactively through maps
linked to statistical graphics. The work pre-
sented in this article is an extension of the
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implementation, known as HealthVis, reported
in MacEachren and colleagues (1998). The
updated system, referred to hereafter as
‘‘HealthVisPCP,’’ extends the capabilities of
HealthVis by adding a method for multivariate
spatiotemporal visualization using a dynami-
cally linked parallel coordinate plot.

The Linked Parallel Coordinate Plot

A typical observation of demographic, socio-
economic, and health data from a census tract
or other spatial enumeration unit for a given
time period consists of a long list of variables.
For a given spatial unit, these observations
might include a vector of values for, perhaps,
median income, rate of lung-cancer mortality
in white females, number of hospitals, number
of oncologists, average level of education, and
so on. Together, this vector makes up a unique
multivariate ‘‘signature,’’ with a high value in
one variable, a low value in another, and so on.
For our purposes in developing a system for
the visualization of these statistics, Inselberg’s
(1985) parallel coordinate plot (PCP) repre-
sentation seemed particularly well suited.

The PCP employs a novel methodology to
visualize beyond three dimensions by repre-
senting each observation, not as a point (as in a
scatterplot), but as a series of unbroken line
segments connecting parallel axes, each of which
represents a different variable. The line seg-
ments are constructed so that they intersect the
axes at a point representative of the relative
observed value of that variable. As an example,

consider the vector of epidemiological data
described above. The observation could be
represented by a series of points, one on each
axis, positioned near the top of the axis if that
variable’s observed value were relatively high or
near the bottom if the value were relatively low.
These points could then be connected by line
segments, resulting in a distinct (perhaps
unique) signature of observed values for that
observation (Figure 1). This would form one of
many multivariate traces, one for each observa-
tion (e.g. each county, state, census tract,
weather station, etc.).

The PCP can be used to represent many
variables observed at a particular time, or a
series of time steps for a given variable (e.g., six
parallel axes each represent one year of a
measurement of a cancer mortality rate at a
given location). Thus, temporal trends and
multivariate signatures can be easily discerned.

Using the PCP, with each axis depicting a
variable, interactions among variables can be
quickly identified. Observations with similar
data values across all variables will share similar
signatures; thus, clusters of like observations
can be discerned. Two variables directly related
to one another would appear on the PCP as
two axes connected by a series of parallel (or at
least noncrossing) line segments. Median in-
come and average education, for example, tend
to be directly related to one another; a parallel
coordinate representation of these two vari-
ables would clearly show this pattern of un-
crossing line segments. Conversely, an inverse
relationship between two variables would be
displayed as a series of line segments that cross

Figure 1 Parallel coordinate

geometry.
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each other between the axes (Wegman 1990).
Temporal persistence can also be noted when
adjacent axes are consecutive time steps of the
same variable.

Though the PCP is a clever data representa-
tion technique, it has several disadvantages
when compared to the scatterplot and other
statistical graphics that may limit its effective-
ness for visualization of data relationships. In
particular, the use of lines as opposed to
points to represent individual observations
requires the use of a great deal more ‘‘display
real estate’’ (or ink on a piece of paper), so that
the result may quickly (with increasing number
of observations) become a confusing tangle of
colors and pixels that has little explanatory
power. However, the addition of dynamic ele-
ments—such as brushing, focusing, coloring,
zooming, and other graphical manipulation
techniques—may be effective for overcoming
these shortcomings of the parallel coordinate
representation.

HealthVisPCP

Spatializing the PCP

At the time of the development of the dynamic
PCP, all previous implementations of the PCP
in the literature had been two-dimensional.1

For geovisualization, extensions need to be
made to the PCP in order to highlight the

interrelation of the two dimensions of space;
implementing latitude and longitude—two
columns of data in a database—as typical
‘‘variables’’ in a PCP would place them on two
separate axes and thus de-emphasize the spatial
relationships crucial to geographic analysis.
Conceptually, what is needed is the addition
of a third display dimension in order to embed a
two-dimensional geographic representation as
a reference axis. This would amount to a
‘‘parallel plane’’ plot (Figure 2), as each axis
could be extruded into two dimensions, each of
which could represent a variable of the user’s
choosing (the obvious default would be latitude
and longitude). In the development of the
application described here, this parallel-plane
plot was prototyped, but it was scrapped in
favor of a computationally less intensive link
between the PCP and a two-dimensional map
in a separate window. This particular applica-
tion of the dynamic PCP linked to a map (and a
scatterplot) is known as HealthVisPCP.

HealthVisPCP

The system was developed using ArcViews

GIS, version 3.2, with customized interface
tools created using ArcView’s scripting lan-
guage ‘‘Avenue’’ (ESRI 1999). MacEachren and
colleagues (1998) developed the original
HealthVis system to (visually) analyze spatial,
temporal, and attribute features of health
statistics for the National Center for Health

Figure 2 The parallel plane concept.
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Statistics. Extensions to HealthVis, described
here, were added with a subsequent contract
from the National Cancer Institute (NCI). In
HealthVis, a great deal of functionality was
added to the default ArcView documents in
order to accomplish a series of goals specific to
epidemiological visualization. These goals
were: (1) enabling the visualization of highs
and lows, (2) detecting regions and clusters, (3)
establishing relationships between mortality
and risk factors (socioeconomic or demo-
graphic statistics), and (4) facilitating the
exploration of association between two vari-
ables. These goals were operationalized with
interactive extensions to the representations
above, such as a focus-by-percentile tool, a
dynamic classification tool, a brushing tool, and
a specialized bivariate map.

HealthVisPCP expands the HealthVis sys-
tem both conceptually and operationally. A new
conceptual goal not listed among the four
above is the facilitation of multidimensional

exploration among several variables, accom-
plished by developing a version of the dynamic
PCP in Avenue. The application (Figure 3)
consists of a set of four linked representations:

1. a choropleth map of the contiguous forty-
eight United States,2 within which are
approximately 800 ‘‘health service areas’’
(HSAs), multicounty units used by federal
agencies for analyzing health statistics
data;

2. a scatterplot, within which may be plotted
one or two variables (usually, in the NCI
application, mortality rates and risk fac-
tors), each point on the scatterplot repre-
senting a single HSA;

3. a map legend; and
4. a dynamic PCP (each line of which

represents a single HSA).

The choropleth map is colored according to a
statistic (such as ‘‘prostate cancer mortality,
white male’’) and a year (such as ‘‘1982–84’’; in

Figure 3 The HealthVisPCP environment, showing choropleth map (upper left), legend (upper right),

scatterplot (center right), and parallel coordinate plot (lower left).
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the datasets obtained, the individual rates for
each HSA are three-year averages). The statis-
tic and the year can be selected by the user in a
dialog box known as the thematic mapper. In
this dialog box, a user can also specify the
number of classes (two, five, or seven). In
addition, he or she is given the option of
creating a bivariate map. Any change in
classification of the choropleth map also
changes the characteristics (e.g., color) of the
corresponding objects in the PCP and the
scatterplot.

The representations were linked such that
when an object or set of objects (HSAs in the
choropleth map, points on the scatterplot, or
lines on the PCP), is selected by the user by
clicking on the object or dragging a box in the
display, the corresponding object(s) in the other
two representations is (are) also highlighted.
Dynamically linked views such as these give the
graphics added power in the understanding of
both the representations and the data repre-
sented within them.

The PCP (Figure 4) was added to the original
HealthVis system as a new ‘‘View’’ document in
ArcView, in a similar fashion to that used for the
scatterplot. As a View, the tools for manipulat-
ing the three representations (PCP, scatterplot,
and map—all View documents) behaved simi-
larly across the representation types. For
example, the zoom feature worked in all three
representations: on the scatterplot and PCP,

a zoom-in not only allowed more detail to be
seen, but also allowed accurate value-reading,
because axis labels were also updated to the new
zoom extent. An additional useful feature of the
original HealthVis system is the dynamic
classifier, which allows users to drag lines on
the plot that represent class breaks. The same
concept was implemented on the dynamic PCP
as a means to allow users to reorder the axes in
cases where a user wishes to compare variables
represented on axes that, in the default order-
ing, are not adjacent.

Building upon experiences in designing and
using a separate PCP implementation (devel-
oped for another project in our lab, described
in Edsall 1999), other useful enhancements
were identified and incorporated in the im-
plementation of the PCP for HealthVisPCP.
Since at any given time the PCP is able to show
a limited number (three or four) variables at its
default zoom extent, a mechanism for panning
the display left and right to reveal other axes
was necessary. The PCP panner is a slider bar
that pans the PCP horizontally, emphasizing
the linear nature of the plot and representing
how much of the PCP is ‘‘off’’ the screen in
either direction at a given time. Also, a button
was added that zooms the PCP to a default
extent that maximizes the amount of infor-
mation contained in the PCP display. This
function is similar to a button (contained
in the original HealthVis system) that simply

Figure 4 Detail of PCP representation in HealthVisPCP.
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restores the default display extents of all of the
windows, refreshing the entire display.

HealthVisPCP was developed not only to
assist health researchers gain a new perspective
on their data, but also to serve as a vehicle for
the testing of the usability of PCPs and their
relative utility for display and analysis of
multidimensional information. The assertion
that the PCP is an effective tool for prompting
multivariate thinking seems reasonable, but
has never been tested, although most authors
who have written about or implemented
PCPs assert their effectiveness for that (or a
similar) purpose (Inselberg 1985; Wegman
1990; Edsall 1999). In the following section, I
report on a usability assessment that tests this
assertion. The assessment addresses narrow
pieces of a larger research endeavor to under-
stand how representations of multivariate
spatiotemporal data should be designed and
implemented.

Investigating Linked Statistical
Graphics: Usability Assessment
of HealthVisPCP

The usability assessment was designed to
evaluate the dynamic PCP in the context of
HealthVisPCP, a visualization environment
designed for the exploration of multivariate
health statistics. The specific goal of the assess-
ment was to compare the relative effectiveness
of each representation form, the scatterplot and
the PCP, for a series of narrowly defined tasks
and for unrestricted exploration of multivariate
spatiotemporal data.

Challenges for Assessment of Exploratory
Visualization Systems

A system’s ‘‘usability’’ is defined by the Inter-
national Organization for Standardization as
‘‘the extent to which the system can be used by
specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a
specified context of use’’ (Karat 1997, 691).
Even a definition as vague as this seems to miss
key issues when applied to design for explora-
tory analysis. Since data-exploration tasks are
themselves broad and hard to define, the
evaluation of a system’s usability in achieving
those tasks is a challenge. With interactive
systems for exploratory data analysis, software

engineers are unlikely to come up with ques-
tions—much less solutions—for the ‘‘specified
users’’ (domain experts) to investigate in an
evaluation of the system.

Knapp (1995) describes a task-analysis model
applied to the design of environments for
‘‘visualization’’ of geographic data. She pro-
poses an iterative approach to constructing a
system through discussions with potential users
of the system, who gave the designers goals
(such as ‘‘I want to be able to describe the
current climate situation in the context of the
expected climate’’) that were then mapped to
physical and mental actions, data, and visual
operators. This task-oriented approach to
interactive system design, however, neglects
the fact that there are tasks and goals of a
visualization system designed for data explora-
tion that are not definable, no matter what
the expertise of the potential user, because the
datasets and potential insights from them
are unexamined and unknown. However, there
may be ways of defining generic tasks that are
typical for exploratory visualization, such as
the recognition of clusters and trends or the
comparison of features. The ability of the
system to facilitate these generic tasks might
serve as a surrogate for the effectiveness of the
system for data-exploration tasks in general.
Examples of these surrogate tasks were devel-
oped for the first phase of the assessment
described in the following sections.

In a visualization environment, designer
attention, if not emphasis, needs to be placed
on testing of the use of the system by domain
experts to explore, hypothesize, observe, and
gain insight into their complex data. User
exploration of information cannot be dependent
on predefined tasks or goals other than the
very general goal of gaining insight and under-
standing. Insight can be evaluated potentially
by some measure of effective hypothesis
generation or observation. In the end, deeper
user understanding of the represented phenom-
ena, not simply the understanding of the
representations themselves or the ability to solve
a narrow problem using those representations,
should be the ultimate goal of any system
designed for exploratory visualization. The
evaluation of the HealthVisPCP system for
multivariate health statistics considers these
issues in phase two of the assessment described
below.
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Assessment

In June 2000, thirty-one subjects at Penn State
and six subjects at the National Cancer Institute
participated in the assessment sessions. The
Penn State subjects were undergraduate and
graduate students in the geography depart-
ment, selected because they were thought to
represent a typical level of expertise of intended
users: researchers—in this case, epidemiolo-
gists—with significant domain expertise. Spe-
cifically, subjects had experience both in
examining datasets for spatial features and in
representing those datasets on maps. The
individuals who made up the sample were also
all relatively familiar with other graphical
representations—such as scatterplots and
histograms—and GIS, but were relatively un-
familiar with the parallel coordinate represen-
tation. These characteristics were also thought
to be representative of the target user group.
The sessions lasted between ninety minutes and
two hours. After an initial training tutorial, the
assessment consisted of two phases, during
which data was recorded.

Assessment: PhaseOne. The first phase in
testing the usability of the PCP for exploratory
visualization compared the use of the PCP and
the scatterplot in isolation from each other.
The strategy for comparing these representa-
tions consisted of comparing the performance
of users in accomplishing a set of tasks. These
tasks were systematically developed to repre-
sent tasks considered typical for use of the
system to explore health statistics.

The development of the tasks used in the
assessment was based on a typology that
focused on three characteristics: the dimen-
sionality of the task (the number of variables
involved); the spatial extent, or scale, of the
task (whether the task was local to one HSA or
regional, incorporating several HSAs); and
task complexity (the difficulty of the task). This
task typology was modeled after a similar
structure in an experiment developed by
researchers in both cartography and epidemiol-
ogy, a structure thought to represent the map-
reading and use tasks typical of epidemiological
analysis (MacEachren, Brewer, and Pickle
1998).

Given the geometry and purpose of the PCP
relative to the scatterplot and other statistical
graphics of lower dimensionality, one reason-

able assertion is that the PCP would outper-
form the scatterplot in questions regarding
multivariate tasks. The reverse may be true for
those queries requiring bivariate interpreta-
tions. It was also considered likely that other
task type distinctions and combinations might
reveal that one representation was favored over
the other, depending on the question type.
Because of this possibility, it is reasonable to
expect that users need to be given—and prefer
working with—multiple representations forms
in order to explore complex geospatial data
fully and comprehensively.

In phase one, the participants were presented
with sixteen tasks in the form of multiple-
choice questions. These questions dealt with
data preloaded into HealthVisPCP concerning
prostate cancer and lung cancer for white males
in the 1980s and early 1990s (part of the set of
health data supplied by the National Cancer
Institute as sample data). Each task was care-
fully created to represent one of the tasks in the
typology above. There were two questions of
each of the eight types tested, for a total
of sixteen questions. In this phase, partici-
pants were shown only one of the two statis-
tical graphic representations at a time, the
scatterplot or the PCP. After the first set of
eight questions, the representation that
they had been shown disappeared and was
replaced by the other, which was then avai-
lable to use in answering the remaining
eight questions. Four subject groups were
used to counterbalance representation and
question-set order. Both the participants’ an-
swers to the questions and the interactions
the participants made with the environment
were recorded for analysis.

Assessment: Phase Two. In phase two,
participants were presented with a more open-
ended task. They were given a new set of data—
heart disease and lung cancer mortality rates in
the 1980s and early 1990s for white females in
the U.S.—and asked to play the role of an
epidemiologist, looking for patterns and struc-
ture in these health statistics. The subjects were
able to use any of the HealthVisPCP represen-
tations (scatterplot, PCP, map, thematic map-
per, etc.) to look for interesting spatial,
temporal, spatiotemporal, or attribute trends
in the data. Their interactions were logged as in
phase one. Participants were asked to provide
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written commentaries of their observations in a
text-entry dialog box.

This second phase was designed to assess the
effectiveness of the system in performing ex-
ploratory tasks of observation and hypothesis
generation and to investigate differences in the
strategies employed by the participants. In
effect, the interaction log in this phase became
an independent variable in the analysis. By
comparing the sophistication of observations
made to the sophistication of the interaction
strategies employed, it is possible to con-
sider whether specific interaction strategies or
representation use led to specific types of
commentary and insights, thereby altering
the way the researcher thinks about a given
problem.

Usability Results

Accuracy. The interaction logs recorded in
phase one were carefully designed to facilitate
querying using relational-database software. In
order to analyze the accuracy of responses, a
series of cross-tabulations were designed, yield-
ing multivariate contingency tables. The de-
pendent variable in the tables is the number
(and percent) of correct responses, given a
representation form (PCP or scatterplot) and a
question type. Since the focus of this particular
assessment is the effect of the representation
type on question-answering accuracy given
specific types of questions, multiway tables
were also created to list the counts of correct
and incorrect answers by representation type
and then by question type.

Some of these tables showed potentially
significant differences in performance between
the representation types, given a state of
variable dimensionality in the question. Table
1, for example, shows effects such as ‘‘Given a
multivariable question, users performed better
using the PCP.’’ A logistic regression model,
appropriate for binary categorical response
variables (in this case, ‘‘correct’’ or ‘‘incorrect’’

answers) was fit to the observed values. Despite
the apparent interactions in the contingency
tables such as the one mentioned above, the
model specified in the analysis (via a backwards-
elimination process) did not include interac-
tions that would have resulted if the representa-
tion type, given a specific question type, had a
significant influence on the odds of a correct or
incorrect answer. Although the raw data seem
to indicate such an interaction, the statistical
evidence for such a relationship is not present.

These results (and others; see Edsall 2001 for
a complete discussion) demonstrate that there
is no objectively measurable difference in
response accuracy between the two representa-
tion types. The parameter estimates associated
with the logistic regression indicate some
differences in accuracy when questions are
grouped in other ways. For example, the odds
of correctly answering a question regarding a
single HSA are better than those of correctly
answering a question regarding multiple HSAs.
The intercept term is also very significant
( po0.05), indicating that the odds of a correct
answer are much greater (regardless of repre-
sentation type or any of the other explanatory
variables) than those of an incorrect answer.
This latter result provides relatively strong
support for the overall contention that geovi-
sualization environments that incorporate mul-
tiple linked representations forms are usable
and useful.

Interaction Log Visualizations. Analysis of
the interaction logs involved the investigation
of the actual interaction that led to the
responses analyzed above. In a geovisualization
environment, a variety of interaction strategies
can often be used in an investigation of a task or
the solution to a problem. Is it possible to
observe a ‘‘sophisticated’’ interaction strategy
that would lead to a correct answer? Did
individuals who performed particularly well

Table 1 Multiway Contingency Table Showing Potential Differences in User Performance (Percent of
Answers Answered Correctly) Given Different Task Types and Representation Types

Parrallel Coordinate Plot Scatterplot

Type
No.

Correct
No.

Incorrect
Total No.
Questions

Percent
Correct

No.
Correct

No.
Incorrect

Total No.
Questions

Percent
Correct

Bivariate 62 24 86 72.09 68 19 87 78.16

Multivariate 63 19 82 76.83 59 28 87 67.82

Univariate 43 15 58 74.14 47 12 59 79.66
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share ways of attacking a problem and working
toward a solution? Likewise, did individuals
who performed relatively poorly with the
environment do so in part because their
interaction with the environment was somehow
inferior?

To address these possibilities, interactions
a user made with the environment in the
experiment described above were logged: each
mouse click, each pan or zoom—each physical
manipulation of the display or the data
represented. From those records, important
differences can be observed and patterns can be
extracted distinguishing the interaction record
of a high-scoring participant from that of a low-
scoring participant.

Interaction logs may be analyzed in a variety
of ways. For the purposes of this assessment,
interaction strategies were of primary interest,
and since interaction strategies are likely to be
influenced by the type of question asked,
separating interactions by individual (to exam-
ine individual subjects’ strategies) and by
question type (to determine if there is a
preferred interaction method given a certain
question type) was logical. These interaction
strategies are analogous to signatures, for
individuals or for question types: of interest is
not just which interaction methods were used,
but when and in what sequence (see Table 2 for
interaction-method coding in the interaction-
log graphs).

Table 2 Interaction-Log Coding

Window Interaction

Question 1. Answer: question is answered

2. Open: new question presented to users

System (interactions affecting multiple

windows using buttons or menu items)

4. ResetWins: R tool was used to restore the representations to

default zoom extent

Thematic Mapper 6. Apply: adjustments were made to the thematic mapper (variables

displayed on choropleth map, number of classes), and apply button

was depressed

Choropleth map/GeoView

(a.k.a. ‘‘Health Service Areas’’)

8. Brushing: selection of HSA(s) on the choropleth map using the

brushing tool

9. ZoomIn: ArcViews zoom in tool was used to magnify the choropleth

map

10. PanHand: ArcViews ‘‘pan hand’’ tool was used to pan across the

choropleth map

11. ZoomOut: ArcViews zoom out tool was used to reduce the

choropleth map

Parallel coordinate plot 13. Brushing: selection of HSA(s) on the PCP using the brushing tool

14. ZoomIn: zoom tool was used to magnify the PCP

15. ZoomOut: zoom tool was used to reduce the PCP

16. PanSlider: PCP panner slider bar tool was used to pan on the PCP

17. ZoomToExtent: PCP restore zoom tool was used to return to

default extent of PCP view

18. Reorder: PCP axes were reordered using dynamic reclassify tool

19. PanHand: ArcViews ‘‘pan hand’’ tool was used to pan across

the PCP

20. RestoreAxes: PCP axes restored to original default order

Scatter plot 13. Brushing: selection of HSA(s) on the SP using the brushing tool

14. ZoomIn: zoom tool was used to magnify the SP

15. ZoomOut: zoom tool was used to reduce the SP

16. Reclassify: dynamic reclassifier used to reposition class breaks on the SP*

17. Focus (Left, Right, Up, Down): focus buttons were used to adjust the

class breaks in the SP (and choropleth map and PCP indirectly)

18. PanHand: ‘‘pan hand’’ tool was used to pan across the SP

Legend Brushing: selection of legend elements: considered inadvertent

ZoomIn: zoom tool was used to magnify the legend

ZoomOut: zoom tool was used to reduce the legend

PanHand: ‘‘pan hand’’ tool was used to pan across the legend

Note: The numbers associated with each interaction correspond to numbers on the y-axis of the interaction logs (Figure 5). These

unordered (qualitative) interaction methods (right column) are grouped together according to the window within which the

interaction occurs (left column); because the scatter plot and parallel coordinate plot were never visible at the same time, these

numbers can be repeated in the interaction log visualizations. Interactions with the legend, though recorded, were likely accidental

and were not included in the numerical coding.
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To discover whether there was a discernable
difference between interaction strategies lead-
ing to either successful or unsuccessful task
accomplishment, eight of the thirty-one inter-
action logs were selected for visual analysis.
The eight consisted of two groups: the four
who scored the highest on the sixteen-question
phase-two questionnaire (four subjects scored
15 out of 16: no one answered every question
correctly) and the four who scored the lowest
(between 7 and 9 questions correctly answered).

The graphs that are produced are timelines
(time on the x-axis) of interactions, with each
interaction marked on the timeline and mapped
onto the y-axis in an order chosen by the

researcher (Figure 5 shows sample interaction-
log visualizations). For this analysis, interac-
tions were grouped on the y-axis according to
the window that was manipulated (Table 2).
The example above (with system, map, and
PCP interactions grouped together) is the
ordering I chose to emphasize, since I was
primarily interested in the representations
being manipulated.

Much can be discerned by comparing the
black (low scorers) and white (high scorers)
traces. During the entire assessment, the four
low scorers tended not to use features of the
scatterplot or the PCP when it was made
available to them, whereas the four more

Figure 5 Sample interaction log graphs. Dashed traces indicate an incorrect answer, solid traces indicate

correct answers, black traces indicate low scorers, white traces indicate high scorers; for example, the

interaction strategy of a low-scoring subject who answered the question correctly is represented by a solid

black line (see text for details).
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successful subjects tended to use the statistical
representations and several of their features
with each question. In Figure 5A, it can be seen
that goyou0619,3 the subject with the fewest
correct responses, employed very unsophisti-
cated interaction strategies. In fact, the strategy
employed by that subject was simply to open
the question and answer it, with little or no
interaction with the environment. Robin-
son0616 was occasionally more ambitious,
adjusting the variables mapped, brushing the
map, or using the PCP panner sporadically.
Both subjects tended to finish answering
questions much more rapidly than their suc-
cessful counterparts. In Figure 5B, however,
Fuller0615 stands out as a highly curious
(though low-scoring) subject, using a wide
variety of interactions, often spending a great
deal longer than his/her lower-scoring counter-
parts deciding on an answer.

A careful look at several of the questions
indicates that it may be possible to extract a
prototypical ‘‘successful’’ interaction strategy:
an amalgam of the interaction signature of the
three successful participants using the same

representation (goyou0620, molleweide0616,
and robinson0620). This is most evident in the
log visualization for question 6 (Figure 5C).
Each of the three participants (all of whom
answered this question correctly) panned the
PCP extensively just before answering, and
before that, they each manipulated the chor-
opleth map in various ways. Though each
subject spent a different amount of time with
the question, the interaction strategy—the
tools used and the sequence in which they were
used—was similar. It can also be seen that
those who got the questions wrong employed
remarkably different (and simpler) strategies
for that question.

The preceding provide examples of general
patterns. Successful subjects generally exhib-
ited more interaction with the system before
deciding on each response than did their
less successful counterparts. Visualizing these
interaction logs reveals other evidence of specific
sequences and strategies that are more likely
to lead to a correct answer. In addition, those
subjects who interacted with the most represen-
tations tended to answer more accurately.

Figure 6 An example exploration interaction log, with corresponding user observations and commentary.
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Exploration Logs. The interaction logs de-
scribed above also serve as useful tools to
understand how subjects used the tools and the
environment for more free-form exploration of
data about which they knew little or nothing
(and for which they were not prompted by a
request to perform specific tasks). What useful
information can be gleaned from these inter-
action logs and their corresponding commen-
tary statements?

The commentaries of observations, like that
found in the text box of Figure 6, revealed some
interesting similarities and differences. For
example, all seven observation sets are similar,
in that they include some recognition of spatial
patterns. Such recognition is illustrated by
phrases such as ‘‘Concentration of heart disease
notable in the east, especially the Appalachian
Region’’ and ‘‘Lung cancer seems to be a
problem especially in Florida and Northern
California.’’ These observations are possible
only through the use of the choropleth map,
either alone or in tandem with other represen-
tations. This use is reflected in the frequent use
of the thematic mapper tool, which changes all
representations to varying degrees but has an
obvious and direct effect on the map. The
consistency of the recognition of spatial pat-
terns—be they correct or incorrect—is prob-
ably a reflection of the perceived focus of the
study (which took place in a geography lab, was
conducted by a geographer, and consisted of an
extension of a geographic information system).
It is thus difficult to extrapolate that this system
is necessarily best for observing spatial patterns
(as opposed to other kinds of patterns) simply
because a majority of observations dealt with
space.

Temporal trends were observed only by those
subjects who interacted with the PCP. Obser-
vations such as ‘‘General decrease in heart
disease mortality (HDM)/General increase in
lung cancer mortality (LCM)’’ and ‘‘There is a
decline in heart disease mortality over time’’
represent the recognition of temporal features.
As described previously, the most direct way in
which temporal trends are noticed in the
environment is through the PCP. Spatiotem-
poral trends are probably best observed
through an animation of the choropleth map
through time, a feature that was not available to
the users. However, some users were able to
notice spatiotemporal features; for example,

fuller0615 observed that ‘‘High sites [of white
female heart disease] are consistent through the
period, mostly in the northeast, W Penna.,
Adirondacks, W. Virginia, Mississippi River
delta, a few other scattered rural counties.’’
Notice that this complex observation consists
of the identification and classification of
specific locations and regions according to
their temporal characteristics. The interactions
of this user are among the most complex of the
subjects. S/he panned and zoomed the PCP,
zoomed the scatterplot, brushed the map, and
frequently adjusted the thematic mapper.
Through this wide variety of interactions,
s/he made complex observations.

Only two subjects stated what was, unam-
biguously, a ‘‘hypothesis.’’ Those two consid-
ered relationships and factors beyond the data
represented for possible explanations about the
data: molleweide0614 noted that ‘‘There is a
greater incidence in those areas with an older
population’’ and fuller015 said that patterns
s/he saw were ‘‘possibly related to the fact
that these are relatively rural populations.’’
Although it is impossible to draw conclusions
from a sample of this size, if the concept of a
hypothesis is expanded to include any observa-
tion that includes the word ‘‘seem’’ (e.g., ‘‘Heart
disease seems to be a particular problem in
Florida’’), since use of that word might indicate
active and curious searching and investigating,
more than half of the subjects were using the
system to generate statements that indicate an
exploratory curiosity. This larger percentage is
encouraging, since the greatest test for a
visualization environment’s success is its ability
to prompt such noted but unconfirmed patterns
and to facilitate curious and creative thought.

Hypothesis generation is an extension of the
observation of trends, patterns, and outliers and
is a high-level conceptual goal of visualization
systems. It is reasonable to expect that those
who developed hypotheses about the data repre-
sented are those who interacted with the system
in a better-planned way. However, such a quali-
tative assessment depends to a great extent not
only on the interpretation of the researcher, but
also on the level of knowledge about the domain
(in this case, epidemiology) of the participant.
Certainly, individuals who are trained to look for
spatial trends and to speculate about possible
correlations are more likely to use the system for
that purpose than individuals who are novices in
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the domain. This expert-novice distinction will
deserve close attention in future, similar assess-
ment exercises.

Through the assessments described in the
section above, it can be said that the PCP and
the scatterplot play important roles in success-
ful exploration: the most complex and compre-
hensive commentaries—those that discuss
spatial, temporal, spatiotemporal, and attribute
trends, patterns, and hypotheses—were those
that made extensive use of the interactive
capabilities of the statistical representations.

Conclusions

This article presents a system for exploring
health statistics. The multidimensional nature
of health statistics and their analysis calls for
creative and useful techniques for their visual
representation. A highly interactive system
such as the one presented here allows multiple
perspectives on complex information, which
can lead to deeper and more comprehensive
knowledge construction about the data repre-
sented. This assertion is examined in a usability
assessment focused on the efficacy of the PCP
and the scatterplot when linked to a geographic
representation such as a choropleth map. The
findings of the assessment include a lack of
support for the superiority of the PCP or
scatterplot to accomplish narrowly defined
tasks of any specific type, at least according to
the task typology developed for the evaluation.
Nevertheless, interaction logs and written
commentary of participants in the study in-
dicate that a visualization environment is most
effective for data exploration when a variety of
tools are presented to and used by the
researcher. The linked PCP is one of a suite
of tools and representations that, in tandem,
serve to create an important visual link between
the human analyst and the represented multi-
dimensional data.’

Notes
1 Extensions to the Starlight project developed
recently at Pacific Northwest National Laboratory
include three-dimensional PCPs linked with maps.
2 Alaska and Hawaii were added in subsequent
versions, but the application used for the tests
described in the fifth section of this article did not
include those states.

3 Subject names were randomly assigned and are in no
way related to the subjects’ names or identities.
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