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Abstract. We present an approach to the process of constructing knowledge
through structured exploration of large spatiotemporal data sets. First, we intro-
duce our problem context and de® ne both Geographic Visualization (GVis) and
Knowledge Discovery in Databases (KDD), the source domains for methods
being integrated. Next, we review and compare recent GVis and KDD develop-
ments and consider the potential for their integration, emphasizing that an itera-
tive process with user interaction is a central focus for uncovering interest and
meaningful patterns through each. We then introduce an approach to design of
an integrated GVis-KDD environment directed to exploration and discovery in
the context of spatiotemporal environmental data. The approach emphasizes a
matching of GVis and KDD meta-operations. Following description of the GVis
and KDD methods that are linked in our prototype system, we present a demon-
stration of the prototype applied to a typical spatiotemporal dataset. We conclude
by outlining, brie¯ y, research goals directed toward more complete integration of
GVis and KDD methods and their connection to temporal GIS.

1. Introduction

Large environmental data sets represent a major challenge for both domain and
information sciences. The domain sciences, most of which developed under data
poor conditions, must now adapt to a world that is data richÐ so data rich that
large volumes of data often remain unexplored while the media they are stored upon
deteriorate or become obsolete. The information sciences, most of which developed
in a pre-computer era or when batch processing by computer was the norm, must
now adapt to a world that is not only digital but highly dynamic Ð in which there
is a potential for computers to produce answers in real time as an analyst explores
data and poses ẁhat if ’ questions. Much of the environmental data being generated
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today (e.g. from the Earth Observation System, from monitoring e� orts in endangered
ecosystems, from meteorological stations, etc.) includes georeferencing. The spatial
aspects of these data are, in fact, often a primary focus of analysis Ð for studies of
pollutant dispersal, forest fragmentation, and other applications. Repeated observa-
tion is critical to answering the most important environmental science questions
(those related to environmental process), thus environmental data sets typically have
temporal as well as spatial components.

It is in this context of both rapidly evolving computing technologies and increas-
ing spatiotemporal data availability that we see a substantial challenge for research
in methods for spatiotemporal data analysis. The challenge is two-fold: to extend
GIS, spatial analysis, and visualization methods (developed for application to static
spatial data) into a spatiotemporal domain and to integrate these components of
geographic information science to produce new methods (and associated tools) that
facilitate environmental science and environmental policy decisions. This overall
challenge is the focus of the Apoala Project underway in our laboratory.

In this paper we address one aspect of the problem, the development and
integration of data analysis and visualization methods designed to facilitate identi-
® cation and interpretation of spatial and spatiotemporal features. Toward this end,
we focus on methods associated with the new but expanding ® elds of Geographical
Visualization (GVis) and Knowledge Discovery in Databases (KDD). GVis has been
de® ned as t̀he use of concrete visual representationsÐ whether on paper or through
computer displays or other mediaÐ to make spatial contexts and problems visible,
so as to engage the most powerful of human information-processing abilities, those
associated with vision (MacEachren 1992, p. 101). A primary focus of GVis research
over the past decade has been the role of highly interactive visualization tools in
facilitating identi® cation and interpretation of patterns and relationships in complex
data. KDD has been de® ned as: t̀he non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data’ (Fayyad et al.
1996, p. 6). As with GVis (see below) KDD is characterized as a multistep process,
a process in which d̀ata mining’ algorithms (algorithms through which patterns are
extracted from data) play a central role.

In the next section, we elaborate upon these de® nitions of GVis and KDD and
build the case for their integration. Section three outlines our approach to an
integrated know ledge construction system (GKConstruct), with emphasis on integra-
tion of GVis and KDD methods, and describes key features implemented in an early
prototype. Knowledge construction is de® ned here as the active process of manipulat-
ing d̀ata’ (which can include numerical and other abstract representations of real
world phenomena) to arrive at abstract models of relationships among phenomena
in the world that facilitate our understanding of those phenomena and, ultimately,
of the world. In section four, we demonstrate how the linked GVis and KDD
methods can be applied to a sample time series of georeferenced climate data. We
conclude, in the ® nal section, with a brief discussion of our more ambitious e� ort to
link these knowledge construction tools more directly to temporal GIS.

2. Seeking patterns in data: complimentary approaches

Particularly when applied to scienti® c data, GVis and KDD have similar goals.
They di� er, however, in the extent to which they rely upon human vision or computa-
tional methods to process data. In this section, we review, separately, the underlying
principles and key developments of the past decade in both ® elds (each builds on
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longer traditions, but has been identi® ed as a distinct research stream for about
a decade).

2.1. Geographic visualization
GVis builds from a base in cartography, geographical information systems, image

analysis, and spatial analysis and has strong ties to related e� orts in scienti® c and
information visualization more generally (e.g. JPL 1987, Kaufman and Smarr 1993,
Treinish 1993) and to exploratory data analysis e� orts in statistics (e.g. Cook et al.
1997, Carr et al. 1998)Ð see MacEachren and Kraak (1997) for a recent review and
bibliography. Our focus here is on the common themes linking various GVis research
activities. Key among these is a view of GVis as a process, part mental and part
concrete (involving human visual thinking, computer data manipulation, and human
computer interaction), in which vast quantities of georeferenced information are
sifted and manipulated in the search for patterns and relationships. Among the ® rst
process oriented perspectives on GVis is DiBiase’s (1990) characterization of visual-
ization as a four-stage process that facilitates science, seen itself as a process. A
complimentary view focusing on the perceptual-cognitive process of interpreting and
understanding georeferenced visual displays was o� ered in MacEachren and Ganter
(1990). Others who have adopted a process oriented approach to GVis include
Monmonier (1992) and Openshaw et al. (1994), with their ideas about use of map
animation in the process of spatial analysis and Mitas et al. (1997) who emphasize
the use of GVis in the process of developing and applying complex landscape
simulations and land use optimizations.

Beyond the emphasis on GVis as a process, several other common threads link
aspects of GVis research. Among these are: (1) the iterative nature of successful
human interpretation of visual displays (e.g. MacEachren 1995, Butten® eld and
Mackaness 1991, Wood 1994), (2) the importance of interactivity that facilitates
both iteration and access to multiple perspectives on information (MacEachren 1994,
Dykes 1997, Kraak 1998), and (3) the overarching goal for visualization methods
(when applied to science) of ® nding patterns and relationships in data (MacEachren
and Ganter 1990, Dorling 1992, Wilbanks et al. 1997).

Most GVis research, whether by geographical information scientists or others,
has focused on overcoming hurdles involved in applying the latest technology to the
visual display and analysis of spatial (and spatiotemporal ) data. It is our contention,
that fundamental advances in GVis will depend as much on establishing a solid
theoretical basis for GVis methods (and to linking that theory with related informa-
tion sciences theory development) as it does on application of advances in technology
(e.g. those leading to increasingly realistic displays) .

A coherent theoretical framework for GVis is just beginning to emerge. That
framework integrates the formalism of semiotics as an approach for understanding
and modeling representational relationships with a cognitive perspective on the
process of using visualization methods to facilitate scienti® c understanding
(MacEachren 1995). The goal for this integrated perspective is to develop a concep-
tualization of GVis as a process that involves humans achieving insight by interacting
with data through use of manipulable visual displays that provide representations
of these data and of the operations that can be applied to them. From semiotics, we
gain tools for understanding abstract representations of phenomena and processes
(i.e. representations in digital, visual, and other forms) as well as methods for
explaining how meaning is brought to the representations by their creators and
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users. From the study of cognition we gain a perspective on the ways in which
human information users conceptualize problem domains, process visual displays,
and link mental schemata to actions through interface tools (® gure 1). This integrated
cognitive-semiotic perspective serves as a base from which to consider three categories
of visualization meta-operations that are at the heart of the data exploration compon-
ents of the Apoala Project: feature identi® cation, feature comparison, and feature
interpretation. These three operation forms are de® ned below, brie¯ y and, in §3,
linked to three categories of KDD operations (introduced in §2.2). The three visual-
ization operations presented here are a revision of a similar set presented in
MacEachren (1995). A distinction made initially, between spatial and spatiotemporal
features, is dropped here and replaced by addition of a higher level process, feature
interpretation. For a detailed explanation of the initial visualization operations and
methods through which each can be implemented, see MacEachren (1995,
pp. 361± 434). The GVis operations delineated have parallels in traditional carto-
graphic approaches to map reading, where tasks are often broken into three levels.
These include Keates’ (1982) delineation of three levels of map symbol perception
(detection, discrimination, and identi® cation), Olson’s (1976) three levels of map
symbol interpretation (comparison of individual symbol characteristics, assessment
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Figure 1. Extended feature ID model for map-based visualization. This diagram attempts to
integrate what we know about human perception and cognition related to the inter-
pretation of visual information displays. Emphasis is given to the iterative nature of
human experts examining a representation and attempting to interpret that representa-
tion and use it as a prompt to insight (a process that cycles between seeing or noticing
f̀eatures’ in the display and interpreting those features by matching what is seen with
what is known. The model suggests that knowledge is stored in the form of cognitive
representations that are drawn upon to generate knowledge schemata (methods for
matching what is sensed with prior knowledge).
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of symbol groupings, and use for decision-making or knowledge building) ,
Meuhrcke’s (1986) three levels of map use (reading, analysis and interpretation),
and Bertin’s (1983) three levels of information (elementary, intermediate, and over-
all ). Key distinctions between the three GVis operations presented here and past
characterizations of map reading levels include an emphasis on f̀eatures’ in the data
(rather than symbols to be translated) and the linking of an object-oriented perspect-
ive on features with an integrated cognitive-semiotic theory of geo-representation.

2.1.1. Feature identi ® cation
Feature identi® cation focuses on the task of ® nding instances of identi® able

f̀eatures’ in spatial or spatiotemporal data. Emphasis is on examining the distribution
of data in all of its dimensions in an e� ort to notice any distinct object, regularity,
anomaly, hot spot, etc. Features can range from individual òbjects’ to patterns of
objects and can vary in size and distinctness. Patterns of objects may be seen as a
whole, with the p̀attern’ not obvious (e.g. a f̀orest’ composed of tree objects) or the
pattern itself may be the key aspect of a feature (e.g. karst topography) . Features
can also vary in the extent to which they re¯ ect the state of things (i.e. are static
over the time frame of interest) or exist due to an action or process (e.g. a street
intersection versus a tra� c accident). From a semiotic perspective, emphasis in
feature identi® cation is on the sign-vehicles of the display (i.e. the display’s graphic
expressions or carriers of meaning), on their conjunctions with one another, and on
the organization among sign-vehicles (sign system syntactics). Feature identi® cation
as a visualization operation, thus, emphasizes what is noticed in a display (at an
abstract level) rather than what the display represents. Visualization methods that
are particularly useful for noticing abstract spatial features and patterns include
focusing, sequencing, multivariate glyphs, and remappings from one space to another.
Methods that facilitate noticing abstract spatiotemporal features and patterns include
animationÐ though time and space, space-time cubes, small multiples (with each
representing a particular time), plus any of the feature-noticing methods (cited above)
when applied to the spatiotemporal aspects of the data.

2.1.2. Feature comparison
Feature comparison extends consideration to multiple objects or patterns. The

goal is to ènhance the likelihood that an analyst will see not only features, but
relationships among features’ (MacEachren 1995, p. 401). Feature comparisons can
focus on any of the attributes used to characterize each feature. Location is the most
obvious for geographical features, thus tools for noticing spatial co-occurrence are
particularly important, but comparison might be on the basis of shape, degree of
pattern clustering, temporal correspondence, or any of a number of other attributes.
Semiotically, emphasis here is also on sign-vehicles, but particularly on the syntactics
of relationships among sign-vehicles or sign-vehicle sets to one another. Visualization
methods that facilitate feature comparison include: scatterplot matrices, parallel
coordinate plots, small multiples, map overlay, multivariate colour schemes, and
linked brushing using any of the above.

2.1.3. Feature interpretation
A feature can be both a member of an abstract òbject class’ (from the perspective

of object-oriented data modeling) and a member of a c̀ategory’ of real world entity
(from the perspective of cognitive category theory). The goal of feature interpretation



A. M. MacEachren et al.316

is to merge the two by bringing domain knowledge to bear on the identi® ed features
and their relationships. From a semiotic perspective, the goal is to link the s̀ign-
vehicle’ of an identi® ed feature (e.g. a visually distinct grouping in a map distribution
or an anomaly in multidimensional data space, etc.) with a real world r̀eferent’
(phenomenon) through a shared ìnterpretant’ (a meaning relationship through which
we characterize the aspects of the referent that are modeled by the sign-vehicle).
Feature interpretation tools, thus, provide connections between abstract data repres-
entations, metadata (data about those data), an analyst’s prior knowledge, and
knowledge sources external to the data set being explored (e.g. digital libraries) .
Through these connections, feature behavior and relationships of features can be
related to behavior of and relationships among real-world phenomena. Visualization
methods that facilitate interpretation of spatiotemporal features include all methods
mentioned above combined with methods of information visualizationÐ methods for
visualizing knowledge constructs, verbal information, etc. Examples of the latter
include cone trees (Robertson 1991), spider diagrams (Armstrong et al. 1992 ), and
spatialization of information (Skupin and Butten® eld 1996).

2.2. Knowledge discovery in databases
The development of KDD coincides with an exponential increase in digital data

generated by and available to science, government, and industry. The de® nition cited
above for KDD, foscusing on a process of identifying patterns in data that are not
only valid and useful but also understandable and novel, has been generally accepted
(see Frawley et al. 1991, Ester et al. 1995, Brachman and Anand 1996). While various
authors have proposed somewhat di� erent delineations of the process, we ® nd that
by Fayyad et al. (1996) particularly suited to the application of KDD in a spatio-
temporal data context. These authors describe the KDD process as consisting of
® ve steps:

Ð Data selectionÐ having two subcomponents: (a ) developing an understanding
of the application domain and (b ) creating a target dataset from the universe
of available data.

Ð PreprocessingÐ including data cleaning (such as dealing with missing data or
errors) and deciding on methods for modeling information, accounting for
noise, or dealing with change over time.

Ð TransformationÐ using methods such as dimentionality reduction to reduce
data complexity by reducing the e� ective number of variables under
consideration.

Ð Data miningÐ having three subcomponents: (a ) choosing the data mining
task (e.g. classi ® cation, clustering, summarization), (b ) choosing the algorithms
to be used in searching for patterns, and (c ) the actual search for patterns
(applying the algorithms).

Ð Interpretation/evaluationÐ having two subcomponents: (a ) interpretation of
mined patterns (potentially leading to a repeat of earlier steps), and (b ) con-
solidating discovered knowledge, which can include summarization and
reporting as well as incorporating the knowledge in a performance system.

Although the list above might suggest a linear process, KDD in practice is
anything but linear. Brachman and Anand (1996, p. 39), for example, contend that
.̀ . . knowledge discovery is a know ledge-intensive task consisting of complex inter-

actions, protracted over time, between a human and a (large) database, . ..’ Fayyad
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et al. (1996) emphasize that KDD involves both interaction and iteration, that
humans repeat analysis steps repeatedly as knowledge is being re® nedÐ thus our
contention above that KDD is really about knowledge construction rather than
discovery .

Several KDD methods have recently emerged from the literature and they di� er
in the conceptualizations developed, re¯ ecting (in part) their separate developments
in ® elds such as database systems, machine learning, statistics, and arti® cial intelli-
gence. We have grouped them into three categories of KDD meta-operations of
increasing complexity: concept hierarchy and structure extraction: (a process in which
data abstractions are derived and linked at multiple conceptual levels), categories

extraction and classi ® cation (a process of deriving classes, clusters, rules, and/or
patterns from target data and using the result to assign data to classes that result
from the categorization process), and phenomenon extraction (a process of deriving
representations of real-world phenomena from a target data set). Each is discussed
below, brie¯ y.

2.2.1. KDD methods for concept hierarchy and structure extraction
Concept hierarchy and structure extraction is a KDD process that models attri-

butes of a multidimensional data set at multiple levels (e.g. for the spatial component,
at multiple scales, resolutions, or levels). Techniques used involve multi-level data
generalization, summarization, and characterization. This process has much in
common with cartographic generalizationÐ particularly as cartographic general-
ization has been formalized with a goal of building hierarchically structured multi-
resolution databases (Frank and Timpf 1994).

Two concept hierarchy and structure extraction techniques suggested in the KDD
literature are the Data Cube Approach (Harinarayan et al. 1996, Gray et al. 1997)
and the Attribute-Oriented Induction Approach (Han 1995, Han and Fu 1996). The
core of both is creation of a concept hiearchy (or lattice) of attributes. In the Data
Cube Approach, concept hierarchies are speci® ed using aggregation functions (Group
by, transitive binary relationships) and database view (table view, object manager
view) de® nitions. Attribute-Oriented Induction methods are based on machine learn-
ing research developments in which concept hierarchies are speci® ed according to
the relations among attributes by using rules de® nition.

Concept hierarchies can relate to spatial, temporal, or attribute components of
a data variable. A spatial concept hierarchy, for example, might specify a nested
series of drainage basins to which a water quality sample is linked or a hierarchy
of political units to which a census sample belongs. A complementary pair of
simple temporal concept hierarchies is illustrated in ® gure 2. Several authors have
investigated methods for extracting concept hierarchies for spatial data (see: Wang
et al. 1997, Koperski et al. 1998, and Han et al. 1997).

2.2.2. KDD methods for categories extraction and classi ® cation
A KDD categories extraction and classi ® cation process involves the search for

common attributes among a set of objects, and then the arrangement of these objects
into classes, clusters, or patterns according to a meaningful partitioning criteria,
model or rule. An object can be a physical feature (e.g. stream-¯ ow measured at
irregularly-spaced Gauging stations), an abstract feature (e.g. precipitation de® citÐ
the deviations from climate means) or an event (e.g. a drought occurring over a



A. M. MacEachren et al.318

year

summer autumn winter spring

Jan  Feb  Mar Apr  May  Jun Jul  Aug  Sep Oct  Nov  Dec

(a) Temporal Concept Hierarchy for
the Southern Hemisphere

year

summer autumn winter spring

Jun  Jul  Aug Sep  Oct  Nov Dec  Jan  Feb May  Apr  May

(a) Temporal Concept Hierarchy for
the Northern Hemisphere

Figure 2. Simple concept hierarchy for climate analysis Ð one (a) appropriate for study of
northern hemisphere climate, the other (b) appropriate to the southern hemisphere.

spatial and temporal extent). In general, methods for categories extraction and
classi ® cation can be grouped into two broad types: symbolic and statistical.

Symbolic methods address the issue of producing sets of statements about local
dependencies among objects in a rule form. A vast literature is available that describes
mining algorithms based on symbolic methods for implementing rule induction tools
in KDD (see Chen et al. 1996). Some example symbolic method algorithms are
CLARANSÐ Clustering Large Applications based upon Randomized Search (Ng
and Han 1994) and BIRCH (Balanced Iterative Reducing and Clustering) (Zhang
et al. 1996). Based on CLARANS, two spatial data mining algorithms were developed
SD-CLARANS (spatial dominant algorithm) and NSD-CLARANS (non-spatial
dominant algorithm) (Ester et al. 1995).

In statistical methods, the focus is on exploiting statistical approaches (probability
distributions, hypothesis testing, model estimation and scoring) for performing
the mining-task of extracting discriminators from a data set (Hosking et al.
1997). Statistical techniques applied for extracting categories are based on
supervised/unsupervised learning, cluster analysis, and related methods. We are
particularly interested in unsupervised methods that can be used to uncover unknown
spatiotemporal patterns in large data sets. One potentially appropriate data mining
tool of this type is AutoClass (Cheeseman and Stutz 1996), a public domain software
package that o� ers unsupervised classi ® cation based upon Bayesian classi ® cation
theory. The AutoClass mining algorithm is designed to work under an assumption
that the class labels for target classes are a priori unknown. The classi ® cation problem
is formulated as an optimization problem that deals with maximizing the likelihood
probabilities of a set of models which are regarded as a set of assumptions. The
result is a fuzzy classi ® cation where each object has a probability of membership in
each class.

2.2.3. KDD methods for phenomenon extraction
Phenomenon extraction involves ® nding instances of an existing object class that

represents a real world phenomenon (e.g. thunderstorm) and/or instances of a previ-
ously unknown phenomenon type (that will be used to de® ne a new object class). A
key distinction between phenomenon extraction and previously de® ned operations
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is the emphasis on linking data f̀eatures’ to real world p̀henomena’ through the
application of domain knowledge. For spatiotemporal environmental data (the data
of interest here), the task becomes one of extracting environmental phenomena from
observational and simulated data sets. The Content-based Querying in Space and
Time (CONQUEST) system represents one attempt at spatiotemporal environmental
phenomenon extraction (Slortz et al. 1995). CONQUEST has been used to extract
(from linked data sources) two canonical climate phenomena that (as seems true for
most spatiotemporal phenomena) have imprecise concept de® nitions in the literature,
cyclones and b̀locking features’ .

2.3. Common themes and potential for integration
It is clear that GVis and KDD share perspectives related to both goals and

approach. For each, a primary goal is to ® nd, relate, and interpret interesting,
meaningful, and unanticipated features (objects or patterns) in large data sets. In
both cases, knowledge construction (or discovery) is viewed as a complex process
and researchers have recognized the important role of the human domain expert in
guiding the process and in interpreting results. In addition, methods in GVis and
KDD both emphasize iteration as central to their e� ective application. Neither a
single visual representation of a data set nor a single data mining run is expected to
result in profound insight. It is only by repeated application of methods, with
systematic changes in parameters, that a coherent picture is expected to emerge.

3. Bringing GVis and KDD methods together

The KDD literature contains frequent mention of the importance of visualization
(e.g. Brachman and Anand 1996, Uthurusamy 1996). In most cases, however, visual-
ization is considered only as a tool to facilitate the interpretation-evaluation stage
of KDD. (Slortz et al. 1995 and Simoudis et al. 1996 are two exceptions). Our goal,
in contrast, is a more complete integration of GVis and KDD methods. In order
to achieve this goal, we approach system integration at three levels: conceptual,
operational, and implementational (Howard and MacEachren 1997).

3.1. Conceptual level
At the conceptual level both GVis and KDD share the same high-level goal, the

construction of knowledge that can be used to advance science, increase business
pro® ts, manage environmental resources, and related applications. Critical issues
that underlie the knowledge construction process are: what kind of spatiotemporal
data are meant to be visualized and mined (e.g. environmental and/or socioeconomic,
spatially discrete and/or continuous), what particular kinds of outcomes are required
from the process (e.g. hypotheses about relationships, predictions of a future state),
and who are the users of knowledge obtained (e.g. domain scientists, policy analysts) .
Decisions about issues at this stage act as constraints on GVis-KDD integration at
the operational level.

3.2. Operational level
The operational level deals with speci® cation of appropriate methods, and com-

binations of methods, for achieving conceptual level goals. We contend that integra-
tion of GVis and KDD methods is essential in order to take full advantage of the
strengths of human analysts (domain expertise and visual pattern recognition abilit-
ies) and computers (raw processing power). We propose a 3Ö 3 conceptualization
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of integrated GVis and KDD methods that links the meta-operation categories
delineated for each above (® gure 3).

As a start toward comprehensive integration of GVis and KDD methods associ-
ated with these meta-operation pairings, we have begun the process of building
and linking tools that support the data mining and interpretation/evaluation steps
of KDD. Emphasis at present is on row one and two, column two, of the
meta-operation matrix (use of feature identi® cation and comparison tools to facilitate
categories extraction and classi ® cation). In the subsection below, we introduce the
speci® c GVis and KDD methods we are developing (and/or adapting) and in section
four we demonstrate application of these methods using our initial prototype.

3.3. Implementational level
At the implementational level, choices are made about speci® c tools that meet

operational level goals, about appropriate algorithms that underlie those tools, and
about speci® c software/hardware environments within which the algorithms can be
realized. In developing and implementing GVis methods and tools to support the
GVis meta-operations detailed above, we have adapted and extended a variety of
visualization and EDA techniques introduced by us and by others over the past
decade. In relation to KDD methods, we rely exclusively on methods provided in
AutoClass. As a result, discussion below focuses primarily on the GVis methods we
integrate to complement AutoClass.

3.3.1. GV is methods
The GVis operation categories detailed above are considered meta-operationsÐ

because each suggests an overall operational goal that is best approached through
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Figure 3. Integration of GVis and KDD methods. With each pairing of operation categories,
we cite possible outcomes of the merger as it relates to knowledge construction goals.
The possibilities are intended as examples from a larger potential list. Examples cited
are derived from a perspective of what we gain by adding GVis to KDD operations.
A similar matrix could be derived taking the alternative perspective.
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the iterative application of a set of more speci® c visual analysis operations. In
GKConstruct, dynamic ìnteractors’ allow users to apply these visual operations to
particular representation forms and the representation forms are related to one
another through dynamic linking. With dynamic linking, data objects that share
some aspect (e.g. spatial location) are linked across display views (thus across
representation forms in our system) so that an action on a data object in one view
will be re¯ ected by a complementary action on corresponding data objects in
other views.

In our initial GKConstruct prototype we have implemented three dynamically
linked general representation forms : geoviews, 3D scatterplots, and parallel coordinate
plots. Each is described below:

Ð Geoviews: three-dimensional windows in which geographic space is mapped
to display space in at least two of the dimensions (® gure 4). The third dimen-
sion is used to represent either the third spatial dimension (elevation/depth)
or to represent time (with time treated as a linear dimension).

Ð 3D scatterplots: representations of the relationships between three variables,
with one variable plotted on each axis of a cube (® gure 5). 3D scatterplots
are a simple form of s̀patialization’ in which non-spatial data d̀imensions’
are mapped to the two- or three-dimensions of a display space. Spatialization
suggests, and takes advantage of, the metaphor of near=similar |far=di� erent.
Using linked views, the m̀apping’ of non-spatial aspects of georeferenced data
to the spaces of a display can be grounded in more intuitive representations
that map geographic space to display space (our geoviews).

Ð Parallel coordinate plots: data representations that contain several parallel

Figure 4. A geoview. In this case, the base of the view represents geographic space and
political boundaries to help provide context. The z-axis represents time. Here, time is
represented as linear and discrete starting with day 1 at the surface. Glyphs highlighted
in red represent precipitation events at those times and places.
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Figure 5. 3D scatterplot. In this scatterplot, samples of cases included in a data mining run
are depicted in a space de® ned by three attributes: sequential date (number of days
from the beginning of the data set), precipitation, and sea level pressure. Colour
represents a fourth attribute (three classes of surface humidity) and size of g̀lyphs’
represent a ® fth (humidity at 700m).

axes, one for each variable in the data set (® gure 6). The data are distributed
along each axis and a line connects individual records from one axis to the
next, producing a s̀ignature’ for each data record. Parallel coordinate plots
(PCPs) are particularly e� ective in uncovering relationships among many
variables (Inselberg 1997). Most previous implementations, however, provided
a limited perspective on data relationships because the assignment of variables

Figure 6. Parallel Coordinate Plot (PCP). This typical PCP depicts each case from a sample
of data used in a data mining run by connecting the position of that case on each
variable axis. The pattern of lines that results represents relationships among the
classes generated in a data mining run (the initial axes of the PCP) and each of the
variables included in the run (including spatial, temporal, and attribute variables).
Our variation on standard parallel coordinate plots includes several additions related
to user interaction (detailed below) as well as the use of colour to represent categories
for one of the variable axes (in this case, the surface humidity axis is grouped into
three equal range classes depicted with shades of green). Not surprisingly, the sample
cases depicted that have low surface humidity (light green) all also have zero precipita-
tion. Considering precipitation, we see that most of these zero precipitation events
occur when surface atmosphere pressure is high and the high precipitation events
occur when pressure is low.
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to axes was ® xed. In our implementation, the user can interactively adjust
that assignment (see details below).

Each of our representation forms can be independently or simultaneously manip-
ulated through applications of one or more interaction forms (® gure 7). The latter
can be considered the implementation of di� erent visual analysis operations. The
interaction forms we have implemented include assignment, brushing, focusing,
colourmap manipulation, viewpoint perspective manipulation, and sequencing. In
principle, linking of the three representation forms allows changes executed in one
representation to be re¯ ected in all of them, however, some of the interaction forms
are logically applicable to only one representation form. Below we describe each of
the interaction forms implemented and how they relate to each of the representation
forms (see web supplement for manipulable illustrations).

Ð Assignment : Assignment allows the user to link data variables to graphic or
dynamic variables of the display. An early version of this kind of assignment
used to explore multi-dimensional data is Bertin’s (1981) concept of matrix
manipulation in which users can iteratively reassign variables to columns and
rows of matrix in an e� ort to ® nd relationships among variables. In our
prototype, users can similarly assign variables to PCP axes (® gure 8, Web
only). By doing so, the user can put any two variables next to one another,
or place multiple variables in a series to search for a particular signature.
They can even repeat variables in order to group a key variable with multiple
potentially related ones. Similarly, the 3D scatterplot allows a user to compare
any three variables by assigning them to axes of the cube. In addition to
assigning variables to location, users can assign variables to line colour (PCP)
or to glyph size and colour (3D scatterplot). When assignment is used to
match data variables to particular display positions (e.g. the axes of the
scatterplots or of the PCPs), the action a� ects only the representation to
which it is applied. When assignment is used to match data variables to
other visual variables (e.g. line or glyph colour), the action is re¯ ected in all
appropriate linked representation forms.

3D Scatterplots

Parallel Coordinate
Plots

GeoViews

Assignment

Brushing

Focusing

Colormap Manipulation

Perspective Manipulation

Sequencing

Operation

Representation
Forms

Interaction
Forms

Linking

Figure 7. Integration of representation and interaction forms. Each of the three representation
forms implemented (as well as others that we may implement in the future), is controlled
through multiple interaction forms that allow users to manipulate various parameters
to the data-to-display mapping. In most cases, linking among the representation forms
results in an action applied by a user to one representation being re¯ ected across the
set of representations displayed.
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Ð Brushing : Brushing is a technique that allows the user to highlight directly
any set of entities in a representation that seem related to one another, appear
to be outliers, or are otherwise of particular interest (® gure 9). While brushing
can be used in a single representation, it is particularly powerful when applied
to one in a set of linked representations. For instance, by highlighting all or
part of a cluster in a 3D scatterplot, a user can quickly determine where those
particular records fall in geographic and/or temporal space (in the geoview)
and can learn whether they have similar signatures in the PCP.

Ð Focusing : Focusing is a technique that allows a user to interactively f̀ocus’ in
on a particular range of values for a numerical variable (Buja et al. 1991).
Rather than identifying display entities to be highlighted directly (as in brush-
ing), focusing tools allow users to manipulate the number and de® nition of
categories displayed (Haug et al. 1997). The simplest focusing method allows
a user to manipulate a threshold or break point of a two class display depicted
by a binary colour schemeÐ with all data entities having values above threshold
represented by one colour or symbol and all values below the threshold
represented by a contrasting colour or symbol (see MacEachren et al. 1993 for
application to visualization of data reliability). Here we allow the user to focus
on any data subset by adjusting a maximum and a minimum thresholdÐ with
data entities having values between these extremes being highlighted by a hue
di� erence (® gure 10, Web only) and allow users to manipulate any break point
between adjacent categories on multi-class maps. Focusing, like brushing, tends
to be particularly e� ective when used with linked representations.

Ð Colourmap manipulatio n : Colourmap manipulation involves replacing one
colour scheme (to which data are mapped) with an alternative colour scheme,
or replacing the colours assigned to speci® c data classes with alternative
colours. By swapping schemes (® gure 11), the user can emphasize di� erent
patterns in the data (Brewer 1997). For instance, a divergent colour scheme
emphasizes deviation from a mean in two directions, while a sequential colour
scheme emphasizes a singular trend. Changing the colours of a particular
class can emphasize or de-emphasize that class. We have taken the approach
of embedding several useful colour schemes in GKConstruct, while at
the same time, allowing the user to customize those schemes. Colourmap
manipulation is applied to all representations simultaneously through linking.

Ð V iewpoint manipulatio n: Viewpoint manipulation is implemented through
tools such as panning and zooming in both two- and three-dimensional
representations, or rotation in a 3D representation (® gure 12, Web only). In

Figure 9. Brushing. Here, the PCP has been b̀rushed’ to highlight a group of adjacent days.
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Figure 11. Colourmap manipulation. Here, the user can select among various colour maps
to be applied in all views. In this case, the user has opted for a 3-step colourmap with
purple representing high, grey representing medium, and green representing low.

Figure 22. Here, colour hue is used to distinguish the 7 classes being explored. The distinct
space, time, and attribute characteristics of the classes are clearly visible.

a 3D representation, user controlled rotation can provide depth cues that
allow the user to perceive relationships that are not otherwise apparent
(Kaiser and Pro® tt 1992). Viewpoint manipulation, as implemented here,
does not e� ect change in linked representations.

Ð Sequencing : Sequencing, or use of the dynamic variable of order to display
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one time slice after another, has an obvious use in facilitating a search for
trends over time. Sequencing is also e� ective when applied to non-temporal
orders (e.g. ordering views along geographical or attribute dimensions of data)
(Slocum et al. 1990). As implemented in GKConstruct, sequencing allows the
user to choose any variable dimension from the data set, sort on that variable,
partition the data into equal interval bins along that dimension, then play a
sequence of images depicting each bin (® gure 13, Web only). Sequencing, when
applied, is re¯ ected in other linked representations as well.

Although each interaction form is described above separately, the tools are expected
to be most e� ective when used together (® gure 14, Web only). For example, a user
might sequence through a variable, see an interesting pattern, and stop the sequence,
sort the order in which the variables are presented in the PCP, manipulate the
colourmap, and then restart the sequencer in order to see if a pattern is more
apparent. In essence, these techniques all share the similar goal of facilitating pattern
noticing. Whether this pattern noticing is used for feature ID, comparison, or
interpretation or for understanding the data mining process, a key goal is to ® nd
relationships among features in attribute, temporal, or geographical space.

The representation and interaction forms described above have been implemented
in a hybrid visualization tool building environment that consists of three parts: (1) an
IBM Data Explorer (DX) program that performs data analysis and display; (2) a
Tcl/Tk script that presents and manages the graphic user interface; and (3) a C
program that de® nes the execution context and linkages between Tcl/Tk and DX
(® gure 15, Web only). [A more detailed explanation of the integration of these tools
is provided on our web supplement: www.geovista.psu.edu/ijgis.htm.] .

Data Explorer (http//www-i.almaden.ibm.com/dx/) is a general-purpose data visu-
alization software package. It employs a data¯ ow client-server execution model
allowing developers to author visualization applications by selecting modules of appro-
priate functionality from a large library, and then describing the ¯ ow of data through
those modules. The functionality of the provided module library can be extended
through a macro-program facility that allows new modules to be created by grouping
speci® c combinations of library modules. Alternately, new modules can be written in
C, following well-de® ned guidelines, and added to local DX libraries. Additionally,
developers can extend DX functionality by authoring applications in C that link
directly to either individual modules or entire applications in DX. In this project, a
facility available in DX called DXLink has been used in conjunction with a custom
C program and Tcl/Tk scripts (http//sunscript.sun.com/about/) to create a unique,
appropriate, graphic user interface for controlling a visualization application authored
in DX. Tcl/Tk provides a simple, pragmatic, yet elegant, development toolkit for
building graphic user interfaces that can control complex processes in a visually
intuitive fashion. Additionally, the rapid development cycle of graphic user interfaces
using Tcl/Tk allows for easy experimentation and detailed development of the interface.
Tcl (Tool Command Language) is a simple, yet powerful, platform independent script-
ing language (runs on Unix, Windows and Macintosh) that is easily embedded into
other applications. Tk is a window system toolkit that adds the functionality of
creating and manipulating very sophisticated graphical user interfaces. Tcl/Tk scripts
can run standalone, be linked with C programs, or extended over the Web.

3.3.2. Categories extraction and classi ® cation with AutoClass
As noted above, AutoClass is a public domain software package that provides

unsupervised classi ® cation based on Bayesian statistics. AutoClass III, the most
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recently released version, combines real and discrete data, allows data to be missing,
and automatically extracts the number of classes from a target data set. The program
assumes that all attributes are relevant, that they are independent of each other
within each class, and that classes are not mutually exclusive (resulting in fuzzy
classes in which each case has a probability of being a member of each di� erent class).

AutoClass is designed to search for the best class descriptions rather than just
partitioning the data. In AutoClass, a class is de® ned as a particular set of parameter
values and their associated model. A classi® cation is a set of classes and the probabilities
of each class. The classi® cation process proceeds by ® rst choosing an appropriate class
model (or set of alternate models), then searching out good classi® cations based on
these models. AutoClass automatically trades o� the complexity of a model against its
® t to the evidence. Background knowledge from an expert can be included in the input,
and the output is a ¯ exible mixture of several di� erent ànswers’ (i.e. the fuzzy classi® ca-
tion). The main disadvantage of this approach already cited in the literature (Cheeseman
1990) is the need to be explicit about the space of models one is searching in. In our
case we explicitly de® ne the models in terms of what, where, and when.

AutoClass includes four simple models, independent and covariant versions of
the multinomial model for discrete attributes and of the Gaussian normal model for
real valued attributes (with minor variations) . To apply a model, a set of discrete
parameters (T) describing the general form of the model usually is used to specify
the functional form for the likelihood function (i.e. a function giving the probability
of the data conditioned on the hypothesized model and parameters). Second, free
variables (V) constitute the remaining continuous parameters within a model, such
as the magnitude of the correlation or relative sizes of the classes. A likelihood
function, de® ned as L (E|VT), embodies an agent’s theory of how likely it would be
to see each possible evidence combination E in each possible model H (an agent
combines the posterior beliefs with prior expectations based on the evidence Ð for
details, see Berger 1985). E will consist of a set of cases (i.e. an associated set of
attributes, such as daily precipitation and temperature observations which can
include ùnknown’ values). H, denotes a hypothesis specifying that the real-world is
in some particular state. Adding more parameters to the model can induce a computa-
tional cost due to the mathematical and algorithmical approximations needed for
Bayesian analysis. AutoClass automatically trades o� the complexity of a model
against its ® t to the evidence.

4. Prototype demonstration Ð ® nding features in spatiotemporal climate data

In this section, we illustrate the potential of our integrated GVis-KDD approach
to knowledge construction with an application of methods to a sample gridded regional
climate data set for northern Mexico and southern US. The target audience for our
demonstration consists of environmental scientists (particularly climatologists). Sample
data examined represent climate phenomena that are continuous in both space and
time. At a conceptual level, the analysis goal is to ® nd both individual features and
classes of feature in spatiotemporal climate data sets. A secondary conceptual level
goal is to explicate the data mining algorithm applied to the data (so that we can
make more informed decisions about setting model parameters and so that scientists
can better interpret the meaning of entity classes derived). At an operational level,
these goals are instantiated as a series of operations or data processing tasks. Emphasis
is on column two, cells one and two, of the meta-operations matrix introduced above
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(® gure 3)Ð on the application of feature identi® cation and comparison methods to the
KDD operation of categories extraction and classi® cation.

As noted above, at this stage in our research we have completed only a partial
integration of GVis and KDD methods, concentrating particularly on developing
tools that facilitate iteration between visual exploration of data mining results and
subsequent (re)application of data mining tools. The presentation of methods must,
of course, be more linear than is the actual data exploration process.

4.1. Data selection and preprocessing
Data sets for this case study consist of daily winter climate data from 1985 to

1993 (data from Cavazos-Perez 1998). These data were selected because they are
nearly exempt of noisy, incomplete, or contradictory information (due to extensive
preprocessing using recognized climate data analysis methods). Hence they serve as
a good test data set for demonstrating our initial steps toward the integration of
GVis and KDD methods. The data were output from the Goddard Space Flight
Center (GSFC) 4-D assimilation scheme based on both observational data and a
Global Change Model (GCM) to produce daily gridded data at a resolution of 2ß
latitude by 2.5ß longitude, covering an area bounded by latitudes 20± 43 N, longitudes
110± 90 W. The winter months (November through March) are the focus because
most surface cold fronts that a� ect the study area occur during this season.

Data mining is concerned with drawing inferences from data, thus with understanding
the patterns of correlation and casual links among the data values in a target data set.
Reliable spatiotemporal data mining must include proper consideration of the funda-
mental spatiotemporal nature of the inference problem. Each data entity in our analysis,
therefore, consists of an attribute at a speci® c time and place (see table 1).

4.2. Data transformation
The data set used for this case study consists of observational data from irregularly

located sample sites collected at regular times (but with missing values) integrated
with model derived values calculated for a regular grid at regular temporal spacing.
While commonly used methods of climate data transformation and integration were
applied, the implications for analysis using our knowledge construction system are
mixed. We can be certain that there are no missing values and that the e� ect of any
data coding blunders will be dampened considerably. On the other hand, some local
anomalies or other meaningful real data aberrations could be ® ltered out in this
process, thus potentially preventing an interesting feature from being uncovered. In
subsequent research we intend to address this issue directly by comparing results for
modeled data to results for less regular (less generalized ) observational data.

Table 1. De® ning the what, when, and where components in a target data set.

what: precipitation, minimum temperature, maximum temperature, sea level pressure change
in 24 hours, speci® c humidity at the surface and at 700mb, the geopotential heights
at 700mb and 500 mb levels, and the 700± 500 mb thickness.

when: year, month, day

where: geographical coordinates of a grid point
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4.3. Data mining
Our main goal in this demonstration is to illustrate how our knowledge construc-

tion tools can be used to search for space-time-attribute patterns in climate data.
While an initial data mining step must precede interpretation-evaluation, an e� ective
knowledge construction session is likely to include an iterative data mining Ð visual

analysis Ð data mining Ð visual analysis cycle. For this demonstration, the particular
task involves extracting categories and classes from the spatiotemporal data. As
noted above, we use the AutoClass software in this step. The results from AutoClass
contain the following components:

Ð a set of classes, each of which is described by a set of parameters that specify
how the class is distributed along various attributes;

Ð a heuristic measure of class strength, i.e. a measure of how well each class
predicts its cases;

Ð a probabilistic assignment of cases in the data to these classes, i.e. for each
case, the relative probability that it is a member of each class;

Ð a global in¯ uence measure, a heuristic measure that indicates overall classi® ca-
tion qualityÐ with values above 5.0 indicating problems such as over® tting
(when the model is unjusti® ably elaborate, with the models structure in part
representing merely random noise in the data), under® tting (when the model
is an oversimpli® cation of reality with additional structure being needed to
describe the patterns in the data) and inadequate (e.g. having the wrong
structure).

4.4. Interpretation/evaluation
An initial AutoClass run with our sample data results in a classi ® cation with

over 40 populated classes and a maximum global in¯ uence value below 5.0, thus the
classi ® cation is a potentially reliable one. The integrated set of representation and
interaction forms in §3 are applied here to output from each AutoClass run on our
data. When measures of class strength are examined, we ® nd that those classes with
highest strength are ones associated with particular years, thus classes that exhibit
temporal dominance (the when component is the most critical for de® ning the
category). Typical of these classes are ones with winters revealing el NinÄ o (very
wet/raining winters) and la NinÄ a (very dry winters) years. On the other hand, classes
with intermediate strength are characterized by cyclic patterns, with spatial domin-
ance. For example, classes in this group show the location of very wet and very dry
areas in the region of the case study over the eight years. Finally, classes with a very
low strength are (not unexpectedly) di� cult to interpret.

Analysis of AutoClass output using GVis tools allows the user to quickly generate
hundreds (if not thousands) of perspectives on the data. Thus, it is impractical (in a
printed paper) to provide a comprehensive description of even a single data analysis
session. Therefore, we present here a limited application of tools to one subset of
data that our initial consideration of data mining results suggests may exhibit
interesting patterns (the prototypical cases from the top seven classes in terms of
class strength, cases from those classes having a 1.0 probability of being a member
of the class to which they are assigned) .

A particularly informative perspective on these data is created by focusing the
PCP on a speci® c year. We can then use the linking among representation forms to
investigate characteristics of each class represented in that year. In 1987, for example,
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the eight sample observations identi® ed are members of three classes: class 0, class 1,
and class 24. By brushing (in the PCP) the lines representing each class, the query
is narrowed and the prototypical s̀ignatures’ of each class represented in 1987 can
be traced. For example, the four observations in 1987 that were most likely to be in
class 24 have nearly identical signatures. Each is not only a zero precipitation event
but also is characterized by moderate-to-low surface humidity, low mid-level humid-
ity, and relatively low sea-level pressure (® gure 16, Web only). The 1987 observations
belonging to class 0, in contrast, do not have a s̀ignature’ that tracks as consistently
through all climate variables: the lines diverge at the mid-level humidity axis, but
reconverge to one particular position on the sea level pressure axis (relatively high)
(® gure 17, Web only). Focusing on 1992 shows the same t̀race’ for class 0: no
precipitation, low surface humidity, high sea level pressure, and a wide variation of
700mb humidity values (® gure 18, Web only). Class 0, then, is clearly more dependent
upon sea level pressure than on mid-level humidity.

The variable to which focusing is applied can be moved from ỳear’ to c̀lass’ to
examine the characteristics of class 0 across all years (i.e. the full set of prototype
class members). As was true for the speci® c years described above, observations in
class 0 overall are characterized by zero precipitation, low surface humidity, high
sea level pressure, and a wide range of mid-level humidity. This relationship can be
con® rmed using the 3D scatterplot, which shows the clustering of large glyphs (size
scaled to sea level pressure) along the x-axis, which is, in this case, 700mb humidity
(® gure 19, Web only).

A more dramatic result of the visualization of prototypical class 0 cases is the
spatiality of this class, as displayed in the geoview (see ® gure 19, Web only); events
in this class happen exclusively over land. This is not a surprising result, given the
combination of climate variables characterizing class 0. Class 0, then, seems to be
an exception to the general pattern noted in our initial overview of the dataÐ it is
a class with relatively high strength, but with a spatial rather than a temporal pattern.

Focusing on another class, class 24, we ® nd it characterized by zero precipitation,
relatively high surface humidity, and moderately low mid-level humidity and sea
level pressure. This clustering is shown not only in the traces of the PCP but also
in the 3D scatterplot. The spatiality of this class also shows a dramatic inverse of
that of class 0: all of the instances of this class occur over the Gulf of Mexico. Again,
a climatologist would expect this result: high surface humidity and lower mid-level
humidity is more common over open water than over land (® gure 20, Web only).

As noted above, the general pattern apparent in the full data set is that the
classes with high strength are distinguished more by temporal than spatial character-
istics, particularly by patterns with similar events that are proximal in time (e.g.
several locations with similar attributes on the same day). Class 26, is a good example
of such a class. In terms of climate variables, cases in class 26 have moderate surface
humidity, low precipitation, and high mid-level humidity events. Events with this
combination of characteristics are clustered temporally. The temporal clustering of
class 26 is apparent if the geoview is rotated to emphasize the time axis: events
belonging to class 26 occur only on certain days of the data set (® gure 21, Web only).

The results of data mining can thus be visualized and interpreted e� ectively using
our combined representation and interaction forms. As a con® rmation of the above
analysis, each of the seven classes in the sample data set (classes 0, 1, 3, 7, 12, 24,
and 26) can be assigned a di� erent colour (using the 7-class spectral choice in the
PCP Classify menu). The clustering of these colours in the 3D scatterplot dramatically
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illustrates that the observations are classi ® ed according to the values of a combination
of climate variables, in tandem with spatial and temporal characteristics (® gure 22Ð
see page 325 of this article).

5. Discussion and future research

The objectives of this paper have been to make the case for integration of GVis
and KDD methods, to propose a conceptual framework for that integration emphas-
izing a merger of meta operations fundamental to each set of methods, and to
describe an initial prototype knowledge construction environment and its application
to a test data set. At this stage in our long term strategy for GVis-KDD integration,
we have applied our knowledge construction methods to an isolated data set stored
as ¯ at ® les and focused on integration of GVis in the ® nal two KDD stages. We
plan a subsequent coupling of GVis-KDD methods and temporal GIS. One goal of
this coupling is to make the early stages in the knowledge construction process more
¯ exible and facilitate interactive exploration of user selected subsets of data (choice
of which is prompted by prior analysis steps). We expect that many of the GVis
methods developed here will be useful for applications at the earlier KDD stages.

At the data selection stage, visualization tools might be used to quickly recognize
common or mismatched spatial or temporal coverage in variables or develop an
understanding of the potential extent, resolution, quality, cost, or other attributes of
available data. At the preprocessing stage, visualization may be particularly import-
ant because visualization has proven to be useful in ® nding holes or errors in data
sets. Data mining e� orts seem to be quite sensitive to such holes or errors, thus it is
important to locate and correct them at this stage. Visualization methods can also
facilitate user understanding of parameter setting for various transformations that
might be applied to reduce data complexity (e.g. parameters of interpolation algo-
rithms that transform point samples to a regular grid) and for understanding the
implications of those transformations Ð see Edsall et al. (in press) for an example
related to fourier transformations.

At the data mining stage, visualization has several potential roles beyond those
highlighted above. Visual display of raw data for each variable in the analysis can
facilitate decisions on appropriate model representation. In addition, visualization
in the form of p̀rocess tracking’ (visual displays that represent key aspects of a
process as it unfolds) can help domain specialists (who are unlikely to be experts in
the database and statistical techniques being used in the mining process) to under-
stand these techniques and their limitations. There also is a potential to use visualiza-
tion for p̀rocess steering’ (controlling parameters of the data mining process as it
unfolds, thus changing outcomes on the ¯ y). We are currently exploring the potential
of parallel computing to achieve the processing speed needed for this application.

As Cheeseman and Stutz (1996) point out, Ìt is the interaction between domain
experts and the machine, searching over the model space, that generates new know-
ledge. Both bring unique information and abilities to the database analysis task, and
each enhances the others’ e� ectiveness’ . Certainly, the value of human insight, intu-
ition and imagination in this process cannot be overestimated. It is our contention
that successful applications of KDD will be de® ned by the strength of the graphic
user interface and the GVis methods it supports Ð thus by the ability of these tools
to provide a gateway to both human information processing abilities and knowledge
discovery software.
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